Tunable Valley Polarization and Valley Orbital Magnetic Moment Hall Effect in Honeycomb Systems with Broken Inversion Symmetry

نویسندگان

  • Zhigang Song
  • Ruge Quhe
  • Shunquan Liu
  • Yan Li
  • Ji Feng
  • Yingchang Yang
  • Jing Lu
  • Jinbo Yang
چکیده

In this Letter, a tunable valley polarization is investigated for honeycomb systems with broken inversion symmetry such as transition-metal dichalcogenide MX2 (M = Mo, W; X = S, Se) monolayers through elliptical pumping. Compared to circular pumping, elliptical pumping is a more universal and effective method to create coherent valley polarization. When two valleys of MX2 monolayers are doped or polarized, a novel anomalous Hall effect (called valley orbital magnetic moment Hall effect) is predicted. Valley orbital magnetic moment Hall effect can generate an orbital magnetic moment current without the accompaniment of a charge current, which opens a new avenue for exploration of valleytronics and orbitronics. Valley orbital magnetic moment Hall effect is expected to overshadow spin Hall effect and is tunable under elliptical pumping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valley-contrasting physics in graphene: magnetic moment and topological transport.

We investigate physical properties that can be used to distinguish the valley degree of freedom in systems where inversion symmetry is broken, using graphene systems as examples. We show that the pseudospin associated with the valley index of carriers has an intrinsic magnetic moment, in close analogy with the Bohr magneton for the electron spin. There is also a valley dependent Berry phase eff...

متن کامل

Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.

We show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry b...

متن کامل

Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict...

متن کامل

Intrinsic valley polarization of magnetic VSe2 monolayers.

Intrinsic valley polarization can be obtained in VSe2 monolayers with broken inversion symmetry and time reversal symmetry. First-principles investigations reveal that the magnitude of the valley splitting in magnetic VSe2 induced by spin-orbit coupling reaches as high as 78.2 meV and can be linearly tuned by biaxial strain. Besides conventional polarized light, hole doping or illumination with...

متن کامل

Spontaneous quantum Hall states in chirally stacked few-layer graphene systems.

Chirally stacked N-layer graphene systems with N≥2 exhibit a variety of distinct broken symmetry states in which charge density contributions from different spins and valleys are spontaneously transferred between layers. We explain how these states are distinguished by their charge, spin, and valley Hall conductivities, by their orbital magnetizations, and by their edge state properties. We arg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015